An Overview of IPv6 Security

UKNOF42 January 2019

Dr David Holder CEng FIET MIEEE

david.holder@erion.co.uk

Overview of IPv6 Security

Common Misconceptions about IPv6 Security

- IPv6 Threats and Vulnerabilities
- IPv6 Security Features
- The Future for IPv6 Security

Overview of IPv6 Security

Common Misconceptions about IPv6 Security

- IPv6 Threats and Vulnerabilities
- IPv6 Security Features
- The Future for IPv6 Security

The Top Two Misconceptions

- 1. IPv6 is *more* secure than IPv4 ×
- 2. IPv6 is *less* secure than IPv4 ×

Both are WRONG

Assume that comparing IPv4 with IPv6 is meaningful – it isn't

More about why people think this later, but first the truth...

- IPv4 networks are built on IPv6 dual stacks
- You have a combined IPv4/IPv6 vulnerability surface
- All networks should be secured for IPv6 vulnerabilities

© Erion Ltd 2018

Stack

DataLink

Physical

Stack

The Third Big Misconception

3. IPv6 is IPv4 with long addresses ×

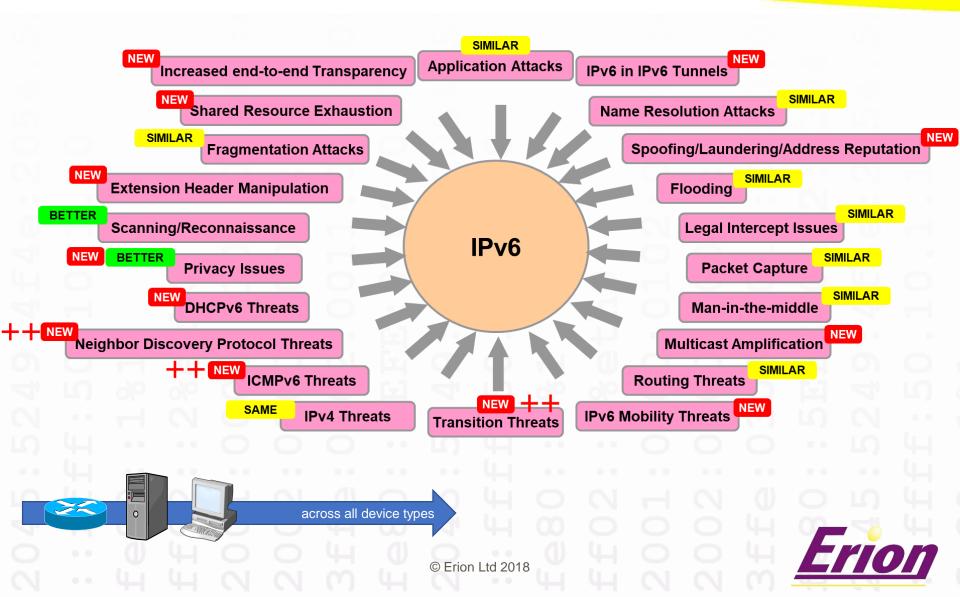
Prefix (64 bits)

Interface ID (64 bits)

- It isn't; many complex & subtle differences from IPv4
- *Even* addresses are very different:
 - New attributes: length, scope and lifetimes
 - Normal for IPv6 interfaces to have multiple addresses
 - NEW IPv6 addresses can change over time
 - DIFFERENT Multicast is very important in IPv6
 - NEW Large number of methods for assigning interface identifiers
- DIFFERENT
 - DIFFERENT Global addresses are normal

<u>Erion</u>

Erion Ltd 2018

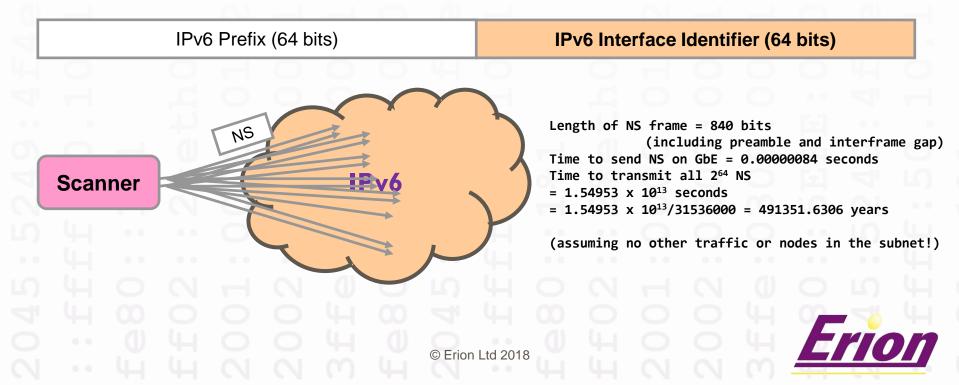

How addresses are used and managed is different

Overview of IPv6 Security

Common Misconceptions about IPv6 Security

- > IPv6 Threats and Vulnerabilities
- IPv6 Security Features
- The Future for IPv6 Security

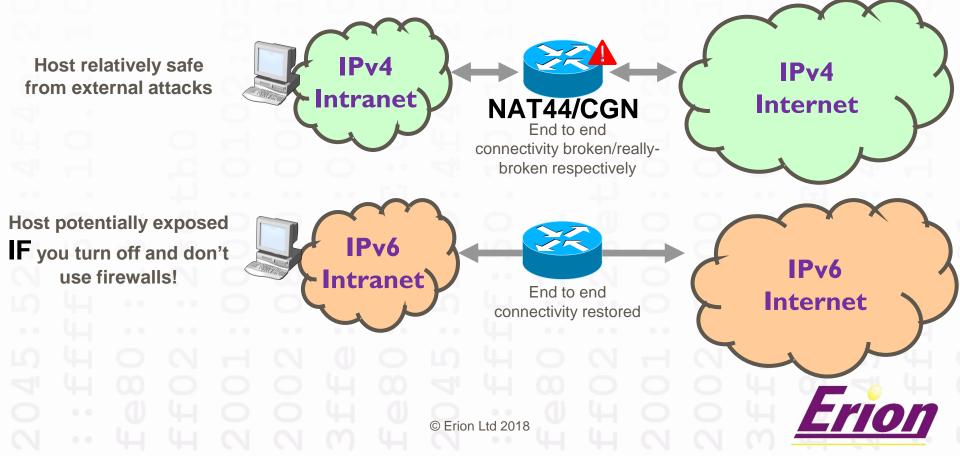
IPv6 Vulnerability Surface



Scanning and Reconnaissance

RFC 7707

BETTER


- Scanning all addresses in IPv4 is easy
- IPv4 methods impractical for IPv6
 - No. of interface addresses 2⁶⁴ = 18,446,744,073,709,551,616
 - Would take **491,351** years on Gigabit Ethernet (no other traffic)
 - More intelligent, forms of reconnaissance are possible

End-to-End Transparency

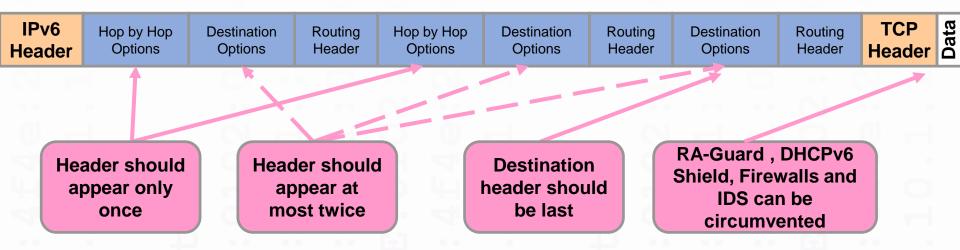
- IPv6 restores end-to-end connectivity
- Global addresses everywhere: no NAT
- IPv6 security relies on *firewalls* not *broken connectivity*

NEW

IPv6 Extension Headers

- Extension Headers (EHs) carry options
 - Many are extendable with complex formats and rules

NEW

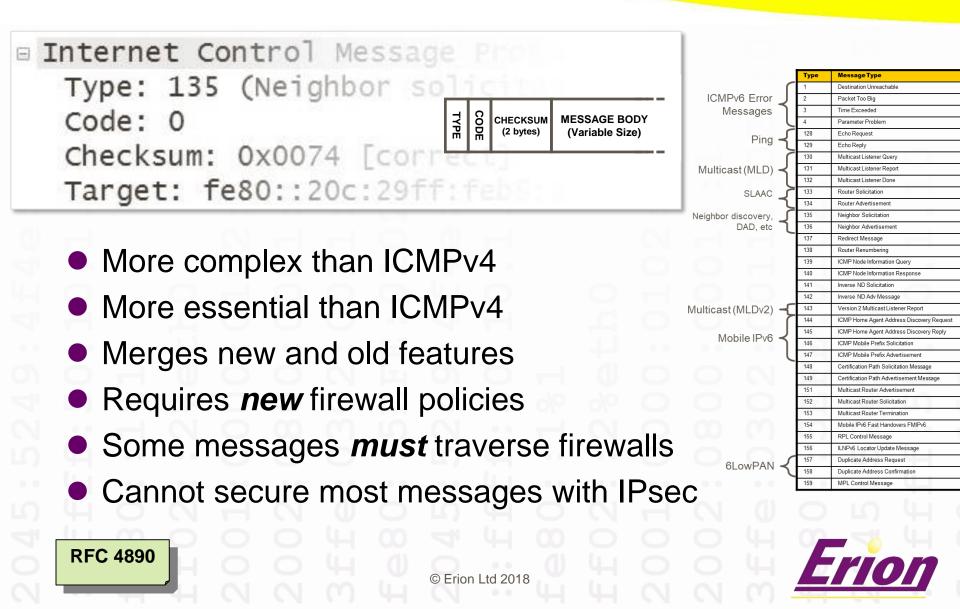

Header Type

Hop-by-hop Options

10.0	TOD							Routing I	Header
IPv6 Header	TCP Header	Data					Fragment Header		
Tieauei	Tieduei							Authentic	ation Header
Next Heade	r = TCP (6)							Encapsu	ating Security Hea
								Destinati	on Options
IPv6	Hop-by-hop	ТСР				Mobility Header			
Header	Header	Header	DОЧ	Data			No Next Header		
IPv6 Header	Hop-by-hop Header	Fragmentation Header	TCP Header		Data				4 LO
neauer	Tieduei		neauer						
Next Hea	der = (0) Next H	eader = (44) Nex	t Header = (6)				- C	ц)	
Next Hea			t Header = (6)		0		0	ц) ••	
Next Hea		eader = (44) Nex	tHeader = (6)				E O :		
Next Header			t Header = (6) Option 2	Etc	2::2				
		Option 1		Etc	02::200				
1		Option 1	Option 2 f TLV options incl	Etc	f02::2 001:00				

Extension Header Threats

- IPv6 places options in extension header chain
 - Originally no limit was placed on length of list


NEW

Chain length makes deep packet inspection difficult
Risk of abuse of length, order and duplication of headers
Can be used to circumvent security mechanisms

RFC2460 RFC6564 RFC7112

ICMPv6 Threats

NEW

Neighbor Discovery (NDP)

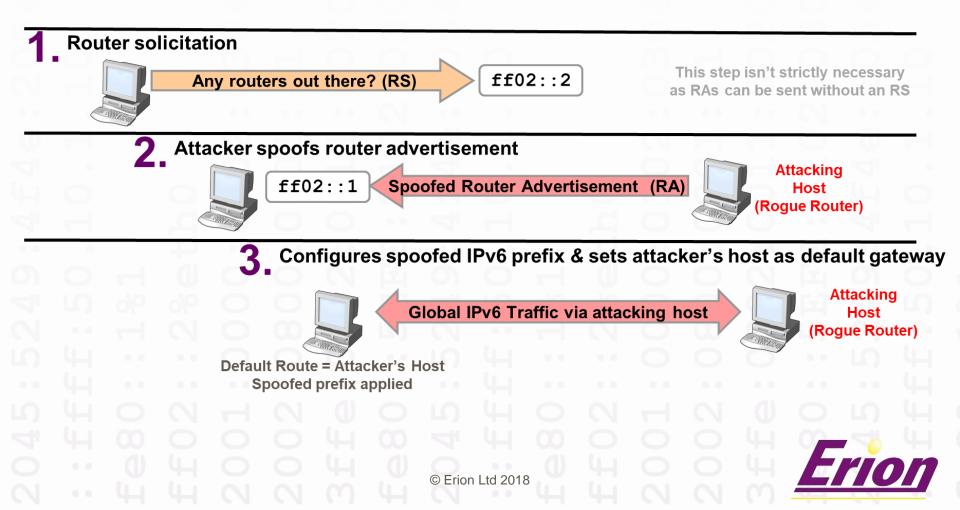
RFC4861 RFC4862 RFC4311 RFC6583

NEW

Stateless address auto-configuration (SLAAC)

- Router discovery
- Prefix discovery
- Parameter discovery
- Next-hop determination

Neighbor Discovery Protocol Threats

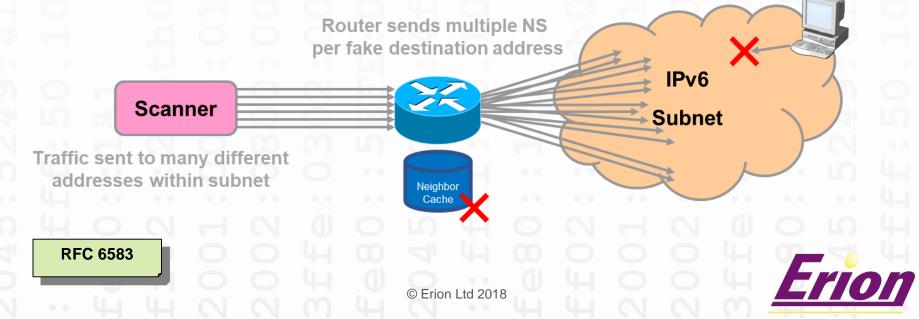

- Neighbor Cache poisoning
- Spoofing Duplicate Address Detection (DAD)
- Interfere with Neighbor Unreachability Detection (NUD)
- Rogue router
- Parameter Spoofing
- Bogus on-link prefixes
- Bogus address configuration prefixes
- Disabling routers
- · Interfere with on-link determinations
- Forwarding loops
- Interfere with NDP Implementation
- Interfere with NDP router implementation from a remote site
- Replay attacks

Address resolution DIFFERENT

- Neighbor unreachability detection (NUD)
- Duplicate address detection (DAD)

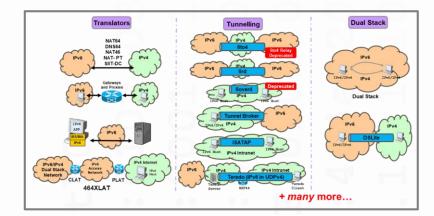
Example: Rogue Router

• Attacks: denial of service (DoS) and man-in-the-middle



Example: Remote NDP Attack

NEW


IPv6 subnets are large

- Addresses $2^{64} = 18,446,744,073,709,551,616$
- NDP may be vulnerable to DoS attack
 - ND cache may be exhausted
 - Valid ND messages may be lost or they may expire
- Attack can be instigated remotely

Transition Mechanisms Threats

- Large number of mechanisms (~30)
- Complex interactions between IPv4 and IPv6
- Standard in many stacks
- Few have built-in security
- Complex address formats
- Each has many vulnerabilities
- Some can create backdoors

 All transition mechanisms are bad, some are necessary, you cannot simply ignore, you may have to use some

IPv6 Address Reputation

- Recording the reputation of 2¹²⁸ addresses is impossible
- Attackers have a huge no. of source addresses to use
- Even recording prefix reputation is problematic

Number of /64s	Number of /48s	Number of /32s
18,446,744,073,709,551,616	281,474,976,710,656	4,294,967,296

- It isn't quite as bad as the above. Only a part of the total address space has been reserved for public addresses. Out of this space only a part has been allocated to RIRs - never mind end users.
- Prefixes may be shared by many innocent parties
- Difficult for SMTP anti-spam measures (RDNSBL)
- Bad solutions can create new problems
- Also impacts analytics and forensics

Overview of IPv6 Security

- Common Misconceptions about IPv6 Security
- IPv6 Threats and Vulnerabilities
- > IPv6 Security Features
- The Future for IPv6 Security

IPv6 Security (IPsec)

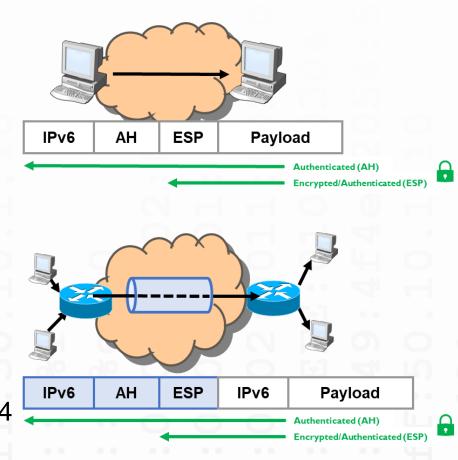
- Built into and protects the network layer
- Allows for different security mechanisms and is extendable
- Two extension headers
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
- Interoperable
- Cryptographically based
- Was mandatory feature in IPv6 stacks
- Identical to IPv4 IPsec
- Cannot solve all security problems

RFC 4301 RFC 4302 RFC 4303 RFC 4305 RFC 4306

Application							
Trans	Transport (e.g. TCP/UDP)						
Key Management	Encryption	Authentication					
ІКЕ	AES Etc	SHA Etc					
	IPsec						
	IPv6						
	Datalink						
	Physical						

Erion Ltd 2018

Transport and Tunnel Modes

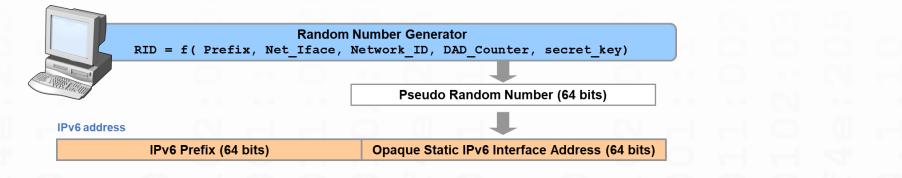

© Erion Ltd

Transport Mode

- Between two hosts
- Rarer in IPv4 due to NAT44
- More common in IPv6?

Tunnel Mode

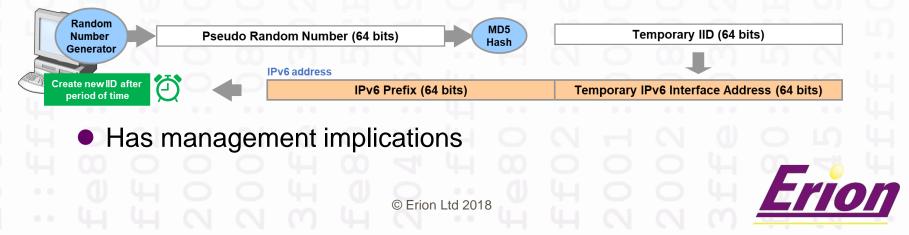
- Security applied to tunnel
- Between hosts or gateways
- Secures whole IPv6 datagram
- Used to create VPNs
- Common in IPv4 due to NAT44



IPv6 Address Privacy

Opaque Static Addresses

• Avoids use of MAC address in IID (modified EUI-64)



Privacy Addresses

RFC4941

RFC 7217

Temporary IID for client communications that changes with time

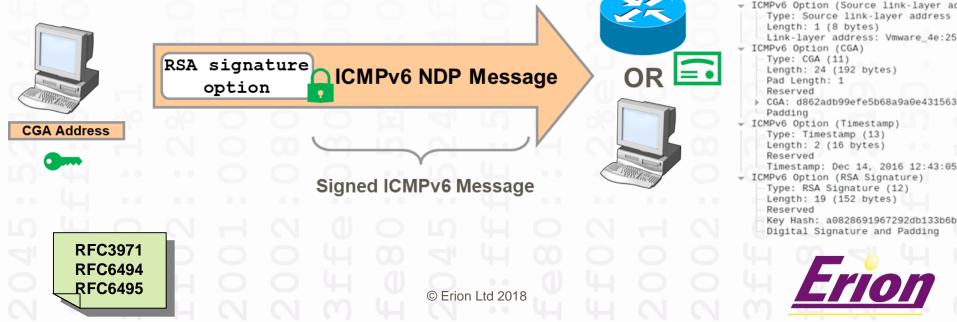
Secure Neighbor Discovery

- Can secure some Neighbor Discovery (ND) messages
- May form part of PKI or use local trust anchor
- Uses Cryptographically Generated Addresses (CGAs)

Internet Protocol Version 6, Src: fe8 Internet Control Message Protocol v6 Type: Router Advertisement (134)

ICMPv6 Option (Prefix information

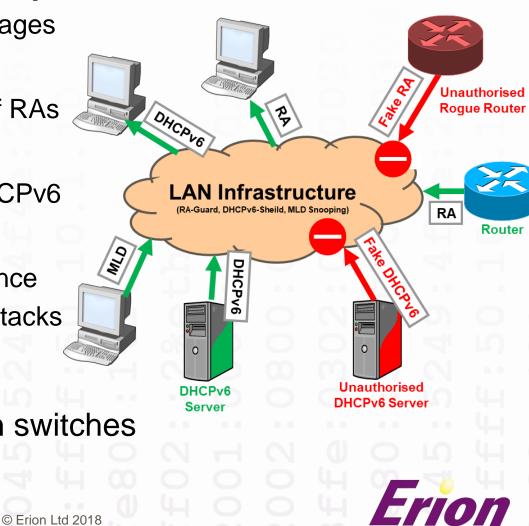
Checksum: 0x5862 [correct]


Router lifetime (s): 30

Reachable time (ms): 0 Retrans timer (ms): 0

Cur hop limit: 64 Flags: 0x20

Code: 0


- CGAs bind the IID to a public key
- Not widely available on all platforms
- Has limitations

IPv6 LAN Security Features

Neighbor Discovery Inspection

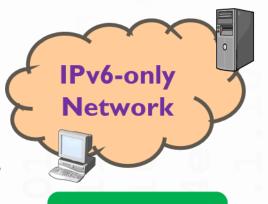
- Validation of NDP messages
- RA-Guard
 - Validation and control of RAs
- DHCPv6-Shield
 - Validation/control of DHCPv6
- MLD Snooping
 - Multicast LAN performance
 - Limits some multicast attacks
- Usually implemented in switchesCan be circumvented

Attacking Security Features

- RA-Guard, MLD-Snooping, DHCPv6-Shield and Neighbor Discovery Protocol Inspection can all be circumvented - easily
- Extension headers make packet inspection difficult

IPv6	EH1	EH2 ICMP	v6 Fake RA				
Attack	s can	be hidden i	n second f	Fragment 2	ent		
IPv6	Frag EH	EHs		IPv6	Frag EH	EHs	Attack
ConRes⁻	strain th trict the	dards addre ne use of exte fragmentatio equipment ac	nsion heade n of certain p	rs protocols			
C7112			Erion Ltd 2018			Er	ion

Overview of IPv6 Security


Common Misconceptions about IPv6 Security

- IPv6 Threats and Vulnerabilities
- IPv6 Security Features
- The Future for IPv6 Security

The Future of IPv6 Security

IPv6-only networks

- No further need to support IPv4
- No IPv4 vulnerabilities
- No transition mechanisms vulnerabilities
- Make best use of IPv6 security features
- Reduced operational costs

IPv6-only devices and operating systems

Conclusions

- IPv4-only networks are historic
- IPv6 should already form a part of your security policy
- IPv6 security introduces many new vulnerabilities and features
- IPv6-only networks will have fewer vulnerabilities
- Legacy IPv4 thinking is a risk; staff IPv6 competency is crucial

Questions and Discussion

Thank you for listening

Further Information

Erion IPv6 Training IPv6 Consultancy IPv6 Blog http://www.erion.co.uk http://www.ipv6training.com http://www.ipv6consultancy.com http://www.ipv6consultancy.com/ipv6blog

<u>Erion</u>

Profile: David Holder

- CEO & Chief Consultant Erion
- Author of numerous reports and whitepapers
- Regular speaker on IPv6
- Extensive experience of IPv6 spanning over 20 years
- Chairman of IPv6 Task Force Scotland

